
Dist-RIA Crawler: A Distributed Crawler for Rich
Internet Applications

Seyed M. Mirtaheri, Di Zou, Gregor V. Bochmann, Guy-Vincent Jourdan
School of Electrical Engineering and Computer Science

University of Ottawa
Ottawa, Ontario, Canada

{smirt016,dzou085}@uottawa.ca, {bochmann,gvj}@eecs.uottawa.ca

Iosif Viorel Onut
Security AppScan R© Enterprise, IBM

770 Palladium Dr
Ottawa, Ontario, Canada

vioonut@ca.ibm.com

Abstract—Crawling web applications is important for index-
ing, accessibility and security assessment. Crawling traditional
web applications is an old problem, as old as the web itself.
Crawling Rich Internet Applications (RIA) quickly and efficiently,
however, is an open problem. Technologies such as AJAX and
partial Document Object Model (DOM) updates only makes
the problem of crawling RIA more time consuming to the web
crawler. To reduce the time to crawl a RIA, this paper presents a
new distributed algorithm to crawl a RIA in parallel with multiple
computers, called Dist-RIA Crawler. Dist-RIA Crawler uses the
JavaScript R© events in the DOM structure to partition the search
space. This paper illustrates a prototype implementation of Dist-
RIA Crawler and inspect empirical performance measurements.

I. INTRODUCTION

The security of applications is an important, ongoing, and
growing concern. Among the applications needing security,
Web-based applications are at the forefront: being on the Inter-
net, they are intrinsically exposed to attacks. Easily produced
and rapidly changing, web-based applications are often found
at the low end of software engineering standards. So-called
Rich Internet Applications (RIAs), which execute important
parts of the application logic in the browser on the user’s side,
just make the matter worse by providing new attack vectors
and creating much more complex architectures.

In a RIA, a client-side page associated with a single URL,
often contains executable code that may change the state of
the page as seen by the user. This state is stored within the
browser, and is called the Document Object Model (DOM).
Its structure is encoded in HTML and includes the program
fragments executed in response to user input. Code execution
is normally triggered by events invoked by the user, such
as mouse over or clicking events. To ensure that a crawler
finds all application content it should execute all events in all
reachable application states. Thus, under the assumption that
a RIA is deterministic, the problem of crawling is reduced to
the problem of executing all events in the application across
all reachable DOMs.

One can reduce the time it takes to crawl a RIA by
executing the crawl in parallel on multiple computational units.
By considering each DOM state (henceforth simply referred to
as STATE) as a vertex and each JavaScript event as an edge,
the problem of the parallel crawling of a RIA is mapped to
the problem of parallel exploration of a directed graph. The
distributed crawler introduced in this paper, called Dist-RIA
Crawler, achieves parallelism by having all the crawlers go

to each vertex, however, each crawler only explores a specific
subset of the edges. Together all of the crawlers cover all of
the edges in the application graph. The underlying assumption
is that, on average, the number of events per STATE is larger
than the number of crawlers, thus every crawler will have some
events to execute in each STATE. While this is a reasonable
assumption in large RIAs, it is not a necessary condition to be
met for Dist-RIA Crawler to finish the crawl successfully.

In this paper, we introduce Dist-RIA Crawler and then
explain some of the practical aspects and challenges faced
in designing it. The contributions of this paper include: a
new local partitioning algorithm based on JavaScript events,
a distributed architecture for RIA crawling, and a prototype
implementation and experimental evaluation of the proposed
system.

The rest of this paper is organized as follows: We give an
overview of the proposed partitioning algorithm and introduce
the system components in Section II. In Section III, we
explain the assumptions made in designing Dist-RIA Crawler.
In Section IV, we explain the variables and the objects used
to represent the state of the crawl internally. In Section V,
we elaborate on the algorithm that runs on the nodes. In
Section VI, we delve into some implementation issues and
evaluate the performance of our prototype. In Section VII, we
discuss the related works. Finally, in Section VIII we conclude
this paper and propose some future improvements.

II. OVERVIEW

Dist-RIA Crawler consists of multiple running processes.
Each process only has access to its own memory and pro-
cesses communicate with each other through message passing.
Processes are thus independent of each other and multiple
processes can run on the same computer to take advantage
of multi-core CPUs, or a single process can run on a single
computer.

There are two types of processes in Dist-RIA Crawler. A
special process called the coordinator is responsible for coor-
dinating the crawl. All other processes are crawler processes,
with the ability to visit a URL, emulate and control a virtual
web browser. These crawler nodes are henceforth referred to
as the nodes. The processes communicate with each other in
a star topology, where the coordinator is at the center of the
star. Through communication with the coordinator, the nodes
indirectly inform each other about the discovered STATEs.



Initially each node contacts the coordinator and gets two
values back from the coordinator. The first value is the total
number of nodes that join the crawl, called NUMBEROFN-
ODES. The second value is a unique identifier number, as-
signed to the node by the coordinator, called NODEID where
NODEID ∈ [0, NUMBEROFNODES).

Using NODEID and NUMBEROFNODES, the set of events
that each node is responsible for is locally and deterministically
determined, in such a way that every event is executed by
one, and only one, node. This task is accomplished by an
assignment function called ASSIGN. The ASSIGN function
takes a STATE as a parameter, and having NODEID and
NUMBEROFNODES as environmental variables, it determines
the set of events in the STATE that the node is responsible for.
For any STATE, the union of all events assigned by the ASSIGN
function to different nodes is equal to the set of all events in
the STATE (Thus every event in every STATE will be executed).
Also, for any STATE, the intersection of events assigned by the
ASSIGN function to two distinct nodes is empty (Thus there
will not be any duplication of work).

Ranges and Strides can be used to create a simple ASSIGN
function. Let us deterministically order the set of JavaScript
events in the page and assign each event a number called
offset. In the case of strides, for instance, the ASSIGN
function allocates all events whose offset is of the form:
∀i ∈ N : NUMBEROFNODES × i + NODEID to a node
whose identifier number is NODEID. A good ASSIGN function
allocates JavaScript events uniformly among the nodes and
thus prevents a subset of nodes from becoming a bottleneck.
We use strides to construct the ASSIGN function and we leave
more sophisticated ASSIGN functions, such as those based on
hashes, for future studies.

A node is responsible for executing all the events assigned
to it by the ASSIGN function for all STATEs. Every time a
node learns about a new STATE, it runs the ASSIGN function
to detect the set of JavaScript events it is responsible for. This
set of events is added to a list structure called UNEXECUTEDE-
VENTS in the STATE under investigation. The STATE is then
added to the WORKINGSTATES list and it will be explored
eventually. If the execution of an event leads to the discovery
of a new STATE, the node informs the coordinator, and the
coordinator eventually propagates the discovery to the other
nodes. Once a node executes all its events and has no more
events to execute, it probes the coordinator for the list of
STATEs newly discovered by other nodes. Eventually every
discovered STATE will become common knowledge.

III. DESIGN ASSUMPTIONS

To facilitate deployment over the internet of the proposed
distributed crawling system, and to ensure its effectiveness
for security testing, Dist-RIA Crawler makes the following
assumptions about the environment and the target RIA it
crawls:

A. Environment

Reliability of nodes and communication channels is as-
sumed. To facilitate the deployment of Dist-RIA Crawler over
different firewall settings, it is also assumed that only the
coordinator has a reachable IP address. In other words, the

coordinator is an HTTP server and all other crawler nodes are
HTTP clients. As a consequence, the coordinator has no means
to contact the nodes and should it have a message for a node,
it must wait until it is contacted by that node and respond with
the message.

B. Target RIA

To automate security assessment of a RIA, the crawler
has to find all STATEs and examine each STATE for security
vulnerabilities.

The web crawler often do not have access to the state of
the server, and can only capture the client side state of the
application. Because the crawler can not capture the state of the
server, performing a specific event may lead to two different
STATEs. Thus even though a web application is deterministic
at whole, because the crawler only has access to the client
side state of the application, and has no access to the state of
the server, the RIA may seem to be non-deterministic to the
crawler.

Finding all STATEs of an unknown non-deterministic RIA
is not feasible1. Dist-RIA Crawler only targets deterministic
finite RIAs. More formally, Dist-RIA Crawler assumes that
visiting a URL always leads to the same STATE; and from a
given STATE, execution of a specific JavaScript event always
leads to the same target STATE.

Given that the target RIA is deterministic and finite, Dist-
RIA Crawler assumes that there exists a finite set of events,
and each STATE is reachable by executing one of these events
from another STATE. Open fields such as text boxes present
a challenge to this assumption. Assigning meaningful data to
open fields has been the topic of extensive research in the field
of deep-web crawling [2]–[6]. Dist-RIA Crawler uses a finite
dictionary to assign values for open fields. Taking advantage
from existing algorithms in deep-web crawling is left for future
studies.

IV. OBJECTS AND STATES

This section describes objects that are used to store the
state of the crawl.

A. Application State

Application states are represented by STATE objects. STATE
object in a node has the following attributes:

• STATEID: Hash of the DOM that uniquely identifies
the STATE.

• PARENTSTATE: A STATE through which this STATE is
reachable.

• PARENTEVENT: The event to be executed in order to
reach this STATE from PARENTSTATE.

• EVENTS: An ordered list of events in the STATE.
Although the node is not responsible to execute all
of events in this list, having all events in STATE is

1Duda et. al. [1] suggest limiting the number of JavaScript events executed
to avoid explosion of STATEs. The suggested technique achieves a partial crawl
of non-deterministic RIA in a finite time.



required because in future the node may learn about a
new STATE from the coordinator, and to reach that
STATE it has to execute one of the events in the
EVENTS list.

• UNEXECUTEDEVENTS: A list of the events that are
to be executed by the node on the STATE. ASSIGN
function is used to populate this list by taking a sub-
set of EVENTS. Thus this list is disjoint from the lists
on other states.

B. Node State

Each node stores the following variables and objects:

• COORDINATORADDRESS: The coordinator’s address.

• SEEDURL: The initial RIA’s URL that is immutable
across different STATEs of the RIA. A new URL is
treated as a separate RIA.

• NUMBEROFNODES: The total number of nodes.

• NODEID: A unique identifier allocated to the node by
the coordinator.

• DISCOVEREDSTATES: The list of STATEs that the node
knows about.

• WORKINGSTATES: The list of STATEs that have events
in their UNEXECUTEDEVENTS list. This list is initial-
ized with the SEEDURL STATE.

• CURRENTSTATE: The current working STATE.

• NODESTATUS: Represent the status of the node and
has one of the following values (Figure 1):
◦ DISCONNECTED: The node is not initialized.
◦ ACTIVE: The node has been initialized and has

work to do.
◦ DONE: The node has finished executing all its

events and does not have any more work to do.
This state marks temporary local termination.

◦ TERMINATED: Crawling is finished and the
node can leave the system. This state marks
the global termination.

Initially the COORDINATORADDRESS is the only global
constant and common knowledge. Having the COORDINA-
TORADDRESS, the node initializes itself by retrieving the
NODEID, NUMBEROFNODES and SEEDURL from the coor-
dinator. It then proceeds with the crawling algorithm described
in Section V.

C. Coordinator State

The coordinator stores the following variables and objects:

• NUMBEROFNODES: The number of nodes. The co-
ordinator has advance knowledge of this number and
based on that synchronizes all node at the beginning
of the crawling.

• STATELISTnodeID: The coordinator keeps track of the
STATEs that each node knows about through this list.
In this list there is an element per node and each
element is an array of STATEIDs of the STATEs that
the corresponding node is aware of.

• NODESTATUSLIST: Stores the NODESTATUS of each
node.

V. DISTRIBUTED CRAWLING ALGORITHM

A. Coordination Protocol

Nodes start at DISCONNECTED state. Initially each node
sends a message, called GETCREDENTIALSFROMCOORDINA-
TOR, to the coordinator asking for its NODEID, the NUM-
BEROFNODES, and the SEEDURL. The coordinator synchro-
nizes the nodes by waiting to get NUMBEROFNODES requests
before responding. Upon arrival of NUMBEROFNODES mes-
sages, the coordinator responds to all nodes with the requested
information. After arrival of the the coordinator respond, nodes
go to the ACTIVE state and crawling begins.

During the crawling, each node contacts the coordinator
when it discovers a new STATE, or when it has no more work
to do. More formally, the messages sent to the coordinator
during the crawling algorithm are:

• SENDNEWSTATETOCOORDINATOR: The node sends
a newly discovered STATE to the coordinator.

• GETNEWSTATESFROMCOORDINATOR: The node
asks the coordinator for newly discovered STATEs by
other nodes.

• SENDNODESTATUSTOCOORDINATOR: The node
sends its NODESTATUS to the coordinator.

Through SENDNEWSTATETOCOORDINATOR and GET-
NEWSTATESFROMCOORDINATOR nodes indirectly propagate
discovered STATEs to each other. Upon getting a request from
a node, the coordinator responds with one of the following
messages:

• STATEs: A set of newly discovered STATEs by other
nodes, if any. Should a node receive newly discovered
STATEs from the coordinator, it will add them to its
WORKINGSTATES and DISCOVEREDSTATES. Once a
node executes all the events that it is responsible
for, it goes into the DONE state, and it informs the
coordinator.

• TERMINATED order: Marks the global termination,
which means that all nodes are in the DONE state,
thus the crawl is over.

• STAY order: The crawl is not over, however, there are
no new STATEs for the node. Thus the node stays in
the DONE status.

We next describe in more details the crawling algorithm as
it runs on the nodes.

B. Local Crawling Algorithm

Algorithm 1 describes the crawling algorithm run locally
on each node. The node iteratively executes events and re-
moves STATEs with no event to execute from its WORK-
INGSTATES list. When the list becomes empty, the node moves
to the DONE state. At this point, it either goes back to the
ACTIVE state if more work becomes available, or it goes to
the TERMINATED state if no more work is available globally.



Disc.start Active Done Term.
work arrives

no work locally

work arrives

no work globally

Fig. 1: The Node Status state diagram.

Algorithm 1 Crawling Algorithm (As Executed at Each Node)

GETCREDENTIALSFROMCOORDINATOR()
NODESTATUS ← ACTIVE
while (NODESTATUS is not TERMINATED) do

if WORKINGSTATES is Empty then
GETNEWSTATESFROMCOORDINATOR()
if WORKINGSTATES is Empty then

NODESTATUS ← DONE
SENDNODESTATUSTOCOORDINATOR()

else
NODESTATUS ← ACTIVE

end if
else

stateToV isit← PICKSTATE(WORKINGSTATES)
eventToExecute← PICKUNEXECUTEDEVENT(stateToV isit)
EXECUTEEVENT(stateToV isit, eventToExecute)
if CURRENTSTATE is not in DISCOVEREDSTATES then

push CURRENTSTATE to DISCOVEREDSTATES
push ASSIGN(CURRENTSTATE) to CURRENTSTATE.UNEXECUTEDEVENTS
push CURRENTSTATE to WORKINGSTATES
SENDNEWSTATETOCOORDINATOR( CURRENTSTATE )

end if
stateToV isit.REMOVEUNEXECUTEDEVENT(eventToExecute)
if stateToV isit.UNEXECUTEDEVENTS is empty then

WORKINGSTATES.REMOVESTATE(stateToV isit)
end if

end if
end while

The crawling algorithm invokes a set of procedures. These
procedures are explained below.

• PICKSTATE: Picks a STATE from the list. This pro-
cedure can be used to implement different crawling
strategies. Some simple examples are:
◦ LIFO: A Last-In-First-Out order of picking

results in a Dept First Search (DFS) strategy
within the scope available to the node.

◦ FIFO: A First-In-First-Out order of picking
results in a Breath First Search (BFS) strategy
within the scope available to the node.

• PICKUNEXECUTEDEVENT: Chooses an event to be
executed. In the case of a full crawl, it is a good
practice to choose events that minimize the overall
crawling time. In the case of a partial crawl, it is
a good practice to choose events that increase the
chances of discovering new STATEs earlier in the
crawl [7]. The so-called Menu and Statistical model-
based crawling algorithms [8], [9] address this issue

and attempt to find as many STATEs early in the crawl.
In this paper, we choose the first unexecuted event and
leave more elaborate approaches to future studies.

• EXECUTEEVENT: Executes the event specified.
Should the execution of an event lead to a new STATE,
this method would add the newly discovered STATE to
WORKINGSTATES and DISCOVEREDSTATES lists.
Should the event to execute does not reside on a
different STATE than CURRENTSTATE, the crawler first
have to get to the STATE.
This can be done by visiting the SEEDURL and
executing a chain of events that leads to the target
STATE. As a future improvement, this method can
be optimized by searching the current known graph
of the application to find a shorter path from the
CURRENTSTATE to the target STATE [8], [9].

• ASSIGN(STATE): This is the ASSIGN function, which
finds the events the node is responsible for and adds
them to STATE’s UNEXECUTEDEVENTS.



Fig. 2: File tree browser RIA screen-shot

• REMOVEUNEXECUTEDEVENT: Removes an event
from the STATE’s UNEXECUTEDEVENTS list.

VI. IMPLEMENTATION AND EVALUATION

To evaluate the Dist-RIA Crawler architecture, a prototype
of the system was implemented. 2 The Coordinator is imple-
mented in PHP 5.2.10 and MySQL 5.0.77, and runs on an
Apache web-server hosted on a Linux R© Kernel 2.6 operating
system. The coordinator process runs on a machine with an
Intel R© Xeon R© CPU E7330 @ 2.40GHz and 4GB of RAM.

The crawler nodes are implemented in C#.NET using the
.NET 4 framework. V8-engine is used to emulate a browser
with the capability to run JavaScript events. Each crawler
process runs on the Windows R© 7 Enterprise operating system
hosted on a separate machine with an Intel Core 2 Due and
1GB of RAM.

The nodes and the coordinator communicate using the
HTTP protocol over TCP channels using a 10G-bps local area
network.

A. Test-Application3

A jQuery-based AJAX file browser library4 (Figure 2) is
used to construct the test-applications by applying the browser
to the file folders. To avoid explosion of STATEs, we disabled
the caching mechanism included in the library, and configured
the application so that it only shows one open sub-folder at any
given time. In this test-application there is one STATE for each
sub-folder in the given file folder. The number of transitions
from a STATE depends on its location and dept of the open
sub-folder in the file hierarchy. The test-applications are two
file folders that contain the source code of two open source
projects (Table I).

B. Results and Discussion

This section presents the experimental results of crawling
the test-applications using our prototype. The experiments
measure the efficiency of the Dist-RIA Crawler in harnessing
the computational power available to it. We measure the effect

2Similar to [10], only the JavaScript events that are triggered directly as
a result user interaction with the RIA are executed.

3http://ssrg.eecs.uottawa.ca/papers/DistRIA-3PGCIC-2013/testbeds.tar
4http://www.abeautifulsite.net/blog/2008/03/jquery-file-tree/

of increasing the number of crawler nodes on the time it takes
to crawl a given RIA. We further capture the time spent to
execute JavaScript events, the network delay, the time spent in
the coordinator, and time wasted while being idle. Each test-
application is crawled in 15 settings with 1 to 15 nodes. We
ran each experiment three times and the presented results are
the average of these three runs.

Figure 3 shows the time it takes to crawl the test-
applications in parallel using different number of crawling
nodes, and shows the break-down of the time in each case.
As the figure shows Dist-RIA Crawler is more effective in the
larger test-application compared to the smaller one. In the case
of the smaller test-application, on average 76.38 percent of the
total to crawl was spent executing JavaScript events, and 19.77
percent of it was spent being idle. Whereas, in the case of the
larger test-application, on average 85.31 percent of the total
time was spent executing JavaScript events, and only 11.34
percent of it spent being idle. In both cases, network delay
and the time spent at the coordinator are minimal, and as the
number of crawler nodes increases a satisfactory speedup is
observed.

Along with the measured time, we also depict the time it
takes to crawl each test-bed with one node, divided by the
number of nodes used to run the experiment. This number is
used to present the optimal hypothetical case: If it takes T1

seconds to crawl a RIA with one node, one expects that n
nodes will take take at least T1/n seconds to crawl the same
RIA. We call this expected number the theoretical optimal time
which is shown on the chart as a line.

Optimal time is only meaningful if the CPU is the bottle-
neck. In case of the larger test-application, a better than optimal
speedup is observed in Figure 3: by increasing the number of
nodes from one to three we achieve speed-up of more than
three. This speedup is achieved since the processing power
is not the bottleneck when crawling the larger application
with one node and two nodes, but memory swapping is. This
effect disappears with a higher number of nodes as the given
RAM suffices. To eliminate the effect of memory swapping,
in the case of the larger test-application the optimal time is
extrapolated based on the time it takes to crawl the application
with three nodes.

The main challenge for scalability is the idle time. This
is the time that a subset of nodes have nothing to do and
are waiting for other nodes to do their work. Figure 4 shows
the idle times of crawling test-applications with 15 nodes. As
explained above, each experiment was repeated three times and
each of the three bars for each node in this chart represent the
idle time for that node in one of the runs. As both Figures
3 and 4 show, idle times are relatively for the smaller test-
application. More specifically, in the smaller test-application
node number 3 is the bottleneck in all runs with 15 nodes,
whereas the larger test-application enjoy a more equal distri-
bution of idle times. The use of a strict-stride based ASSIGN
function partially explains this discrepancy. This function may
make a node bottleneck by assigning a larger number of time-
consuming events to it. This problem is application-specific
and smaller applications are more susceptible to it. The use
of more randomized ASSIGN functions (e.g. hash-based), and
the deployment of load balancing algorithm can alleviate this
problem.



0 2 4 6 8

1
0

1
2

1
4

1
6

0

100

200

300

400

500

600

700

Number of crawler nodes

Ti
m

e
(s

)

Time Spent to Execute JavaScript
Time Spent at the Coordinator

Time Wasted over Network Delays
Time Wasted at Idle Nodes
Optimal Time Base on T1

0 2 4 6 8 1
0

1
2

1
4

1
6

0

500

1,000

1,500

Number of crawler nodes

Time Spent to Execute JavaScript
Time Spent at the Coordinator

Time Wasted over Network Delays
Time Wasted at Idle Nodes
Optimal Time Based on T3

Fig. 3: Time to crawl a RIA with multiple nodes: Apache HTTPD source code file browser (left), and Apache Cassandra
source code file browser (right).

0

1,000

2,000

3,000

4,000

Ti
m

e
(m

s)

N
od

e
1

N
od

e
2

N
od

e
3

N
od

e
4

N
od

e
5

N
od

e
6

N
od

e
7

N
od

e
8

N
od

e
9

N
od

e
10

N
od

e
11

N
od

e
12

N
od

e
13

N
od

e
14

N
od

e
15

0

1,000

2,000

3,000

Ti
m

e
(m

s)

Fig. 4: Idle time distribution during parallel crawl of AJAX file browser with 15 nodes: Apache HTTPD (upper figure), and
Apache Cassandra (lower figure) source codes.



Browsed Source Code States Transitions Average Number of Total JavaScript
(Nodes) (Edges) Edges per Node Events Executed

Apache HTTPD 2.4.3 91 2,293 25.197 7,461
Apache Cassandra 1.2.1 163 4,816 29.546 27,149

TABLE I: AJAX file browser testbeds

VII. RELATED WORKS

The problems of crawling a RIA have been studied in
recent years. Amalfitano et al. [11] describe techniques and
tools for testing a RIA based on passively analyzing log-files
and reconstituting the user sessions. Mesbah et al. describe
a method to crawl RIA applications through simulating user
interactions by identifying JavaScript events from the user
interface and firing them to reach different states of the
application [10], [12]–[14]. Duda et al. [1] describe a method
for testing a RIA that contains AJAX calls to the server. The
described algorithm is based on a Breadth-First-Search (BFS),
and is optimized to avoid repeated execution of the same
AJAX calls, similar to [7]. Different assumptions about the
structure of the web applications lead to different models for
crawling. A survey paper on model-based crawling was written
by Choudhary et al. [9]. Benjamin et al. studied the hypercube
model of crawling in which the assumption is that the order of
executing events does not matter [7], [15]. Dincturk et al. [16]
studied a statistical approach in choosing the order of events.
Other works in this area include [17] and [18]. To the best of
our knowledge, however none of these studies target distributed
crawling of RIAs.

Distributed crawling of traditional web applications has
been described in the literature extensively [19]. Loo et al. [20]
describe distributed web crawling where a large number of
crawling engines share the task of crawling the Internet. The
distribution of the tasks of crawling different URLs is per-
formed by hashing the URL (either only the host-name part, or
the entire URL) and distributing the resulting hash values to the
different crawlers, for instance, using a distributed hash table
(DHT). Exposto et al. [21] also include geographic information
about the crawlers and the searched servers into the task
distribution algorithm in order to allocate a crawler that is
close to the server to be crawled. Boldi et al. [22], in the paper
on the UbiCrawler, shows how the so-called consistent hashing
approach can be used to allocate the tasks to different crawlers
in such a way that there are only minimal changes when some
crawler disappears or new crawlers come in. This approach can
be used to obtain better fault tolerance. These works mostly
deal with the crawling of the traditional web applications
based on a page URL. To the best of our knowledge none
of the studies above handles distributed crawling of all of the
application STATES associated with a single URL.

VIII. CONCLUSION AND FUTURE IMPROVEMENTS

This paper considers distributed crawling of RIAs. A
new load partitioning algorithm is proposed and a system
for distributed crawling of RIAs, called Dist-RIA Crawler,
is introduced. Dist-RIA Crawler partitions the crawling task
based on the JavaScript events of a given page by assigning
different subsets of events to different crawling nodes. A
special node called the coordinator is used to control the
system and to distribute discovered application states among

the crawling nodes, as well as to perform load balancing. A
prototype of the system is implemented and evaluated with
up to 15 nodes. For large RIAs, the implemented prototype
demonstrate satisfactory speed up.

Dist-RIA Crawler can be improved in several directions:

• Load Balancing: A load-balancing technique, that
dynamically changes its behaviour based on the in-
frastructure available to the system, can improve this
work and reduce the idle times. This is particularly
useful if on average the number of events in each page
is lower than the number of crawler nodes.

• Model-based Crawling: Dist-RIA Crawler is based
on BFS. BFS does not always choose the best event
to execute next to discover STATEs early and min-
imize the time it takes to finish the crawl. Model-
based crawling can be used to achieve these goals by
choosing events in different orders [7], [8], [15], [16].

• Cloud Computing: The proposed architecture is not
elastic with respect to the available resources. Support
for dynamic working nodes allows the system to take
advantage of the appearing nodes, and deals with
leaving nodes.

• Fault Tolerance: The current implementation does not
consider the possibility of failing nodes and thus every
failing of a node leads to a failure of the system.
Check points can be integrated to make the system
more resilient to failures.

ACKNOWLEDGEMENTS

This work is largely supported by the IBM R© Center for
Advanced Studies, the IBM Ottawa Lab and the Natural Sci-
ences and Engineering Research Council of Canada (NSERC).
A special thank to Mustafa Emre Dincturk.

TRADEMARKS

IBM, the IBM logo, ibm.com and AppScan are trademarks
or registered trademarks of International Business Machines
Corp., registered in many jurisdictions worldwide. Other prod-
uct and service names might be trademarks of IBM or other
companies. A current list of IBM trademarks is available
on the Web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml. Intel, and Intel Xeon are
trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries. Linux is
a registered trademark of Linus Torvalds in the United States,
other countries, or both. Windows is a trademark of Microsoft
Corporation in the United States, other countries, or both. Java
and all Java-based trademarks and logos are trademarks or
registered trademarks of Oracle and/or its affiliates.



REFERENCES

[1] C. Duda, G. Frey, D. Kossmann, R. Matter, and C. Zhou, “Ajax crawl:
Making ajax applications searchable,” in ICDE, pp. 78–89, 2009.

[2] S. Raghavan and H. Garcia-Molina, “Crawling the hidden web,” in
Proceedings of the 27th International Conference on Very Large Data
Bases, VLDB ’01, (San Francisco, CA, USA), pp. 129–138, Morgan
Kaufmann Publishers Inc., 2001.

[3] S. W. Liddle, D. W. Embley, D. T. Scott, and S. H. Yau1, “Extract-
ing Data behind Web Forms,” Lecture Notes in Computer Science,
vol. 2784, pp. 402–413, Jan. 2003.

[4] L. Barbosa and J. Freire, “Siphoning hidden-web data through keyword-
based interfaces,” in In SBBD, pp. 309–321, 2004.

[5] A. Ntoulas, “Downloading textual hidden web content through keyword
queries,” in In JCDL, pp. 100–109, 2005.

[6] J. Lu, Y. Wang, J. Liang, J. Chen, and J. Liu, “An Approach to
Deep Web Crawling by Sampling,” Web Intelligence and Intelligent
Agent Technology, IEEE/WIC/ACM International Conference on, vol. 1,
pp. 718–724, 2008.

[7] K. Benjamin, G. von Bochmann, M. E. D. Dincturk, G.-V. Jourdan,
and I.-V. Onut, “A strategy for efficient crawling of rich internet
applications,” in ICWE, pp. 74–89, 2011.

[8] M. E. Dincturk, S. Choudhary, G. von Bochmann, G.-V. Jourdan, and
I.-V. Onut, “A statistical approach for efficient crawling of rich internet
applications,” in ICWE, pp. 362–369, 2012.

[9] S. Choudhary, M. E. Dincturk, S. M. M. G. von Bochmann, G.-V.
Jourdan, and I.-V. Onut, “Crawling rich internet applications: The state
of the art,” in Proceedings of the 2012 Conference of the Center for
Advanced Studies on Collaborative Research, CASCON ’12, (Riverton,
NJ, USA), IBM Corp., 2012.

[10] A. Mesbah and A. van Deursen, “Invariant-based automatic testing
of ajax user interfaces,” in Proceedings of the 31st International
Conference on Software Engineering, ICSE ’09, (Washington, DC,
USA), pp. 210–220, IEEE Computer Society, 2009.

[11] D. Amalfitano, A. R. Fasolino, and P. Tramontana, “Techniques and
tools for rich internet applications testing,” in WSE, pp. 63–72, 2010.

[12] D. Roest, A. Mesbah, and A. van Deursen, “Regression testing ajax
applications: Coping with dynamism,” in ICST, pp. 127–136, 2010.

[13] A. Mesbah, A. van Deursen, and D. Roest, “Invariant-based automatic
testing of modern web applications,” IEEE Trans. Software Eng.,
vol. 38, no. 1, pp. 35–53, 2012.

[14] A. Mesbah, A. van Deursen, and S. Lenselink, “Crawling ajax-based
web applications through dynamic analysis of user interface state
changes,” ACM Trans. Web, vol. 6, pp. 3:1–3:30, Mar. 2012.

[15] K. Benjamin, G. v. Bochmann, G.-V. Jourdan, and I.-V. Onut, “Some
modeling challenges when testing rich internet applications for secu-
rity,” in Proceedings of the 2010 Third International Conference on
Software Testing, Verification, and Validation Workshops, ICSTW ’10,
(Washington, DC, USA), pp. 403–409, IEEE Computer Society, 2010.

[16] S. Choudhary, M. E. Dincturk, G. von Bochmann, G.-V. Jourdan, I.-V.
Onut, and P. Ionescu, “Solving some modeling challenges when testing
rich internet applications for security,” in ICST, pp. 850–857, 2012.

[17] A. Marchetto, P. Tonella, and F. Ricca, “State-based testing of ajax web
applications,” in Proceedings of the 2008 International Conference on
Software Testing, Verification, and Validation, ICST ’08, (Washington,
DC, USA), pp. 121–130, IEEE Computer Society, 2008.

[18] A. A. Andrews, J. Offutt, and R. T. Alexander, “Testing web applica-
tions by modeling with fsms,” Software and Systems Modeling, vol. 4,
pp. 326–345, 2005.

[19] C. Olston and M. Najork, “Web crawling,” Foundations and Trends in
Information Retrieval, vol. 4, no. 3, pp. 175–246, 2010.

[20] B. T. Loo, S. Krishnamurthy, and O. Cooper, “Distributed web crawling
over dhts,” Tech. Rep. UCB/CSD-04-1305, EECS Department, Univer-
sity of California, Berkeley, 2004.

[21] T. Vazão, M. M. Freire, and I. Chong, eds., Information Networking. To-
wards Ubiquitous Networking and Services, International Conference,
ICOIN 2007, Estoril, Portugal, January 23-25, 2007. Revised Selected
Papers, vol. 5200 of Lecture Notes in Computer Science, Springer, 2008.

[22] P. Boldi, B. Codenotti, M. Santini, and S. Vigna, “Ubicrawler: A
scalable fully distributed web crawler,” Proc Australian World Wide
Web Conference, vol. 34, no. 8, pp. 711–726, 2002.


